轴承知识库

这里有专业的轴承知识,涉及轴承的型号、安装、拆卸、使用、维护、保养等等各方面的知识!

润滑脂的加脂方法?

润滑脂的加脂方法有涂抹法、脂杯法、脂枪法和集中给脂法四种。  (1)涂抹法   手工涂抹不宜用裸手而用工具。要求加脂量符合上节要求,脂确实布满所有需润滑的轴承表面。在脂使用过一定时期后,需要换脂或补脂,因此需按下节确定换脂期。  (2)脂杯法   在轴承旁开小孔以通向脂杯,靠杯内的脂不断补充给轴承。对高速轴承应设置逸脂阀,通过离心作用逸出轴承中过多的脂,以减少轴承的摩擦功耗和高速带来的温升。   (3)脂枪法   用脂枪通过压力将脂经加脂孔打入轴承,多用来补脂。  (4)集中给脂法   用泵通过管道将脂统一输往各轴承部位,应保证脂的流动路线能挤除旧脂,将新脂补入各润滑点。  脂枪法可用于多点润滑,点数更多时宜用集中给脂法。四种加脂方法对脂的针入度有所要求。

...

轴承零件经热处理后常见的质量缺陷问题

轴承零件经热处理后常见的质量缺陷有:淬火显微组织过热、欠热、淬火裂纹、硬度不够、热处理变形、表面脱碳、软点等。
  1.过热
  从轴承零件粗糙口上可观察到淬火后的显微组织过热。但要确切判断其过热的程度必须观察显微组织。若在GCr15钢的淬火组织中出现粗针状马氏体,则为淬火过热组织。形成原因可能是淬火加热温度过高或加热保温时间太长造成的全面过热;也可能是因原始组织带状碳化物严重,在两带之间的低碳区形成局部马氏体针状粗大,造成的局部过热。过热组织中残留奥氏体增多,尺寸稳定性下降。由于淬火组织过热,钢的晶体粗大,会导致零件的韧性下降,抗冲击性能降低,轴承的寿命也降低。过热严重甚至会造成淬火裂纹。
  2.欠热
  淬火温度偏低或冷却不良则会在显微组织中产生超过标准规定的托氏体组织,称为欠热组织,它使硬度下降,耐磨性急剧降低,影响轴承寿命。
  3.淬火裂纹
  轴承零件在淬火冷却过程中因内应力所形成的裂纹称淬火裂纹。造成这种裂纹的原因有:由于淬火加热温度过高或冷却太急,热应力和金属质量体积变化时的组织应力大于钢材的抗断裂强度;工作表面的原有缺陷(如表面微细裂纹或划痕)或是钢材内部缺陷(如夹渣、严重的非金属夹杂物、白点、缩孔残余等)在淬火时形成应力集中;严重的表面脱碳和碳化物偏析;零件淬火后回火不足或未及时回火;前面工序造成的冷冲应力过大、锻造折叠、深的车削刀痕、油沟尖锐棱角等。总之,造成淬火裂纹的原因可能是上述因素的一种或多种,内应力的存在是形成淬火裂纹的主要原因。淬火裂纹深而细长,断口平直,破断面无氧化色。它在轴承套圈上往往是纵向的平直裂纹或环形开裂;在轴承钢球上的形状有S形、T形或环型。淬火裂纹的组织特征是裂纹两侧无脱碳现象,明显区别与锻造裂纹和材料裂纹。
  4.热处理变形
  轴承零件在热处理时,存在有热应力和组织应力,这种内应力能相互叠加或部分抵消,是复杂多变的,因为它能随着加热温度、加热速度、冷却方式、冷却速度、零件形状和大小的变化而变化,所以热处理变形是难免的。认识和掌握它的变化规律可以使轴承零件的变形(如套圈的椭圆、尺寸涨大等)置于可控的范围,有利于生产的进行。当然在热处理过程中的机械碰撞也会使零件产生变形,但这种变形是可以用改进操作加以减少和避免的。
  5.表面脱碳
  轴承零件在热处理过程中,如果是在氧化性介质中加热,表面会发生氧化作用使零件表面碳的质量分数减少,造成表面脱碳。表面脱碳层的深度超过最后加工的留量就会使零件报废。表面脱碳层深度的测定在金相检验中可用金相法和显微硬度法。以表面层显微硬度分布曲线测量法为准,可做仲裁判据。
  6.软点
  由于加热不足,冷却不良,淬火操作不当等原因造成的轴承零件表面局部硬度不够的现象称为淬火软点。它象表面脱碳一样可以造成表面耐磨性和疲劳强度的严重下降。

...

选择轴承游隙时,应考虑哪几个方面

选择轴承游隙时,应考虑以下几个方面: 1、轴承的工作条件,如载荷、温度、转速等; 2、对轴承使用性能的要求(旋转精度、摩擦力矩、振动、噪声); 3、轴承与轴和外壳孔为过盈配合时导致轴承游隙减小; 4、轴承工作时,内外套圈的温度差导致轴承游隙减小; 5、因轴和外壳材料的膨胀系数不同,导致轴承游隙减小或增大。 6、根据使用经验,球轴承最适宜的工作游隙为近于零;滚子轴承应保持有少量的工作游隙。在要求支承刚性良好的部件中,轴承允许有一定数值的预紧力。这里特别指出,所谓工作游隙,是指轴承在实际运转条件下的游隙。还有一种游隙叫原始游隙,是指轴承未安装前的游隙。原始游隙大于安装游隙。我们对游隙的选择,主要是选择合适的工作游隙。阀门进口泵 7、国家标准规定的游隙值分为三组:有基本组(0组)、小游隙辅助组(1、2组)和大游隙辅助组(3、4、5组)。选择时,在正常工作条件下,宜优先选用基本组,便可使轴承得到合适的工作游隙。当基本组不能满足使用要求时,则应选用辅助组游隙。大游隙辅助组适用于轴承与轴和外壳孔采用过盈配合,轴承内外圈温差较大,深沟球轴承需要承受较大轴向负荷或需改善调心性能,心及要求提高极限转速和降低轴承摩擦力矩等场合;小游隙辅助组适用于要求较高的旋转精度、需严格控制外壳孔的轴向位移,以及需减少振动和噪声的场合。
游隙是滚动轴承能否正常工作的一个重要因素,分为轴向游隙和径向游隙。选择适当的游隙,可使载荷在轴承滚动体之间合理分布;可限制轴(或外壳)的轴向和径向位移,保证轴的旋转精度;能使轴承在规定的温度下正常工作;减少振动和噪声,有利于提高轴承的寿命。因此。在选用轴承时,必须选择适当的轴承游隙。
...

如何用好滚动轴承

通过大量的滚动轴承失效分析研究表明,轴承短寿或过早的丧失精度,有的是由于材料缺陷或制造不当所致,但在相当大的程度上是由于没有严格按照轴承使用要求进行安装、维护,或者是轴承选型不当或实际载荷超过轴承本身的额定载荷等原因造成轴承的非正常损坏  例如,轴承零件的疲劳剥落在很大程度上就是因为润滑油中混有杂质引起的。可见,要想实现滚动轴承具有更长的寿命和精度保持期,除要求轴承制造厂家提高产品质量外,轴承用户也必须用科学的方法和程序使用轴承,否则,再好的轴承也会在恶劣的随意的使用条件下夭折。  滚动轴承是一种精密的机械支承元件,轴承用户深切希望装在主机上的轴承能够在预定的使用期内不致损坏并保持其动态性能,但客观事实有时并非尽如人意,突发的轴承失效事故会给用户造成重大损失。
...

轴承的滚道噪声问题

轴承的滚道噪声,滚道声是由于轴承旋转时滚动体在滚道中滚动而激发出一种平稳且连续性的噪声,只有当其声压级或声调极大时才引起人们注意。  其实滚道声所激发的声能是有限的,如在正常情况下,优质的6203轴承滚道声为25~27dB。这种噪声以承受径向载荷的单列深沟球轴承为最典型,它有以下特点:   a、噪声、振动具有随机性;   b、振动频率在1kHz以上;   c、不论转速如何变化,噪声主频率几乎不变而声压级则随转速增加而提高;   d、当径向游隙增大时,声压级急剧增加;   e、轴承座刚性增大,总声压级越低,即使转速升高,其总声压级也增加不大;   f、润滑剂粘度越高,声压级越低,但对于脂润滑,其粘度、皂纤维的形状大小均能影响噪声值。   滚道声产生源在于受到载荷后的套圈固有振动所致。由于套圈和滚动体的弹性接触构成非线性振动系统。当润滑或加工精度不高时就会激发与此弹性特征有关的固有振动,传递到空气中则变为噪声。  尽管轴承的滚道噪声是不可避免的,然而可采取高精度加工零件工作表面,正确选用轴承及精确使用轴承使之降噪减振。
...

国外机械行业的轴承热处理方法介绍

热处理质量好坏直接关系着后续的加工质量以致最终影响零件的使用性能及寿命,同时热处理又是机械行业的能源消耗大户和污染大户。近年来,随着科学技术的进步及其在热处理方面的应用,热处理技术的发展主要体现在以下几个方面:
(1):热处理: 热处理过程中所形成的废水、废气、废盐、粉尘、噪声及电磁辐射等均会对环境造成污染。解决热处理的环境污染问题,实行清洁热处理(或称绿色环保热处理)是发达国家热处理技术发展的方向之一。为减少SO2、CO、CO2、粉尘及煤渣的排放,已基本杜绝使用煤作燃料,重油的使用量也越来越少,改用轻油的居多,天然气仍然是最理想的燃料。燃烧炉的废热利用已达到很高的程度,燃烧器结构的优化和空-燃比的严格控制保证了合理燃烧的前提下,使NOX和CO降低到最低限度;使用气体渗碳、碳氮共渗及真空热处理技术替代盐浴处理以减少废盐及含CN-有毒物对水源的污染;采用水溶性合成淬火油代替部分淬火油,采用生物可降解植物油代替部分矿物油以减少油污染。
(2):精密热处理: 精密热处理有两方面的含义:一方面是根据零件的使用要求、材料、结构尺寸,利用物理冶金知识及先进的计算机模拟和检测技术,优化工艺参数,达到所需的性能或最大限度地发挥材料的潜力;另一方面是充分保证优化工艺的稳定性,实现产品质量分散度很小(或为零)及热处理畸变为零。
(3):节能热处理: 科学的生产和能源管理是能源有效利用的最有潜力的因素,建立专业热处理厂以保证满负荷生产、充分发挥设备能力是科学管理的选择。在热处理能源结构方面,优先选择一次能源;充分利用废热、余热;采用耗能低、周期短的工艺代替周期长、耗能大的工艺等。
(4):无氧化热处理: 由采用保护气氛加热替代氧化气氛加热到精确控制碳势、氮势的可控气氛加热,热处理后零件的性能得到提高,热处理缺陷如脱碳、裂纹等大大减少,热处理后的精加工留量减少,提高了材料的利用率和机加工效率。真空加热气淬、真空或低压渗碳、渗氮、氮碳共渗及渗硼等可明显改善质量、减少畸变、提高寿命。
   轴承零件的热处理质量控制在整个机械行业是最为严格的。轴承热处理在过去的20来年里取得了很大的进步,主要表现在以下几个方面:热处理基础理论的研究;热处理工艺及应用技术的研究;新型热处理装备及相关技术的开发。
1 .高碳铬轴承钢的退火: 高碳铬轴承钢的球化退火是为了获得铁素体基体上均匀分布着细、小、匀、圆的碳化物颗粒的组织,为以后的冷加工及最终的淬回火作组织准备。传统的球化退火工艺是在略高于Ac1的温度(如GCr15为780~810℃)保温后随炉缓慢冷却(25℃/h)至650℃以下出炉空冷。该工艺热处理时间长(20h以上),且退火后碳化物的颗粒不均匀,影响以后的冷加工及最终的淬回火组织和性能。之后,根据过冷奥氏体的转变特点,开发等温球化退火工艺:在加热后快冷至Ar1以下某一温度范围内(690~720℃)进行等温,在等温过程中完成奥氏体向铁素体和碳化物的转变,转变完成后可直接出炉空冷。该工艺的优点是节省热处理时间(整个工艺约12~18h), ;处理后的组织中碳化物细小均匀。另一种节省时间的工艺是重复球化退火:第一次加热到810℃后冷却至650℃,再加热到790℃后冷却到650℃出炉空冷。该工艺虽可节省一定的时间,但工艺操作较繁。
2.高碳铬轴承钢的马氏体淬回火:
2.1 常规马氏体淬回火的组织与性能.近20年来,常规的高碳铬轴承钢的马氏体淬回火工艺的发展主要分两个方面:一方面是开展淬回火工艺参数对组织和性能的影响,如淬回火过程中的组织转变、残余奥氏体的分解、淬回火后的韧性与疲劳性能等;另一方面是淬回火的工艺性能,如淬火条件对尺寸和变形的影响、尺寸稳定性等。常规马氏体淬火后的组织为马氏体、残余奥氏体和未溶(残留)碳化物组成。其中,马氏体的组织形态又可分为两类:在金相显微镜下(放大倍数一般低于1000倍),马氏体可分为板条状马氏体和片状马氏体两类典型组织,一般淬火后为板条和片状马氏体的混合组织,或称介于二者之间的中间形态—枣核状马氏体(轴承行业上所谓的隐晶马氏体、结晶马氏体);在高倍电镜下,其亚结构可分为位错缠结和孪晶。其具体的组织形态主要取决于基体的碳含量,奥氏体温度越高,原始组织越不稳定,则奥氏体基体的碳含量越高,淬后组织中残余奥氏体越多,片状马氏体越多,尺寸越大,亚结构中孪晶的比例越大,且易形成淬火显微裂纹。一般,基体碳含量低于0.3%时,马氏体主要是位错亚结构为主的板条马氏体;基体碳含量高于0.6%时,马氏体是位错和孪晶混合亚结构的片状马氏体;基体碳含量为0.75%时,出现带有明显中脊面的大片状马氏体,且片状马氏体生长时相互撞击处带有显微裂纹。与此同时,随奥氏体化温度的提高,淬后硬度提高,韧性下降,但奥氏体化温度过高则因淬后残余奥氏体过多而导致硬度下降。常规马氏体淬火后的组织中残余奥氏体的含量一般为6~15%,残余奥氏体为软的亚稳定相,在一定的条件下(如回火、自然时效或零件的使用过程中),其失稳发生分解为马氏体或贝氏体。分解带来的后果是零件的硬度提高,韧性下降,尺寸发生变化而影响零件的尺寸精度甚至正常工作。对尺寸精度要求较高的轴承零件,一般希望残余奥氏体越少越好,如淬火后进行补充水冷或深冷处理,采用较高温度的回火等。但残余奥氏体可提高韧性和裂纹扩展抗力,一定的条件下,工件表层的残余奥氏体还可降低接触应力集中,提高轴承的接触疲劳寿命,这种情况下在工艺和材料的成分上采取一定的措施来保留一定量的残余奥氏体并提高其稳定性,如加入奥氏体稳定化元素Si、Mn, ;进行稳定化处理等。
2.2 常规马氏体淬回火工艺常规高碳铬轴承钢马氏体淬回火为:把轴承零件加热到830~860℃保温后,在油中进行淬火,之后进行低温回火。淬回火后的力学性能除淬前的原始组织、淬火工艺有关外,还很大程度上取决于回火温度及时间。随回火温度升高和保温时间的延长,硬度下降,强度和韧性提高。可根据零件的工作要求选择合适的回火工艺:GCr15钢制轴承零件:150~180℃;GCr15SiMn钢制轴承零件:170~190℃。对有特殊要求的零件或采用较高温度回火以提高轴承的使用温度,或在淬火与回火之间进行-50~-78℃的冷处理以提高轴承的尺寸稳定性,或进行马氏体分级淬火以稳定残余奥氏体获得高的尺寸稳定性和较高的韧性。不少学者对加热过程中的转变进行了研究,如奥氏体的形成、奥氏体的再结晶、残留碳化物的分布及使用非球化组织作为原始组织等。G.Lowisch等两次奥氏体化后淬火的轴承钢100Cr6的机械性能进行了研究:首先,进行1050℃奥氏体化并快冷至550℃保温后空冷,得到均匀的细片状珠光体,随后进行850℃二次奥氏体化、淬油,其淬后组织中马氏体及碳化物的尺寸细小、马氏体基体的碳含量及残余奥氏体含量较高,通过较高温度的回火使奥氏体分解,马氏体中析出大量的微细碳化物,降低淬火应力,提高硬度、强韧性和轴承的承载能力。在接触应力的作用下,其性能如何,需进行进一步的研究,但可推测:其接触疲劳性能应优于常规淬火。酒井久裕等[7]对循环热处理后的SUJ2轴承钢的显微组织及机械性能进行了研究:先加热到1000℃保温0.5h使球状碳化物固溶,然后,预冷至850℃淬油。接着重复1~10次由快速加热到750℃、保温1min后油冷至室温的热循环,最后快速加热到680℃保温5min油冷。此时组织为超细铁素体加细密的碳化物(铁素体晶粒度小于2μm、碳化物小于0.2μm),在710℃下出现超塑性(断裂延伸率可到500%),可利用材料的这一特性进行轴承零件的温加工成型。最后,加热到800℃保温淬油并进行160℃回火。经这种处理后,接触疲劳寿命L10比常规处理大幅度提高,其失效形式由常规处理的早期失效型变为磨损失效型。轴承钢经820℃奥氏体化后在250℃进行短时分级等温空冷,接着进行180℃回火,可使淬后的马氏体中碳浓度分布更为均匀,冲击韧性比常规淬回火提高一倍。因此,В.В.БЁЛОЗЕРОВ等提出把马氏体的碳浓度均匀程度可作为热处理零件的补充质量标准。
2.3 马氏体淬回火的变形及尺寸的稳定性.马氏体淬回火过程中,由于零件各个部位的冷却不均匀,不可避免地出现热应力和组织应力而导致零件的变形。淬回火后零件的变形(包括尺寸变化和形状变化)受很多因素影响,是一个相当复杂的问题。如零件的形状与尺寸、原始组织的均匀性、淬火前的粗加工状态(车削时进刀量的大小、机加工的残余应力等)、淬火时的加热速度与温度、工件的摆放方式、入油方式、淬火介质的特性与循环方式、介质的温度等均影响零件的变形。国内外对此进行了大量的研究,提出不少控制变形的措施,如采用旋转淬火、压模淬火、控制零件的入油方式等。Beck等人的研究表明:由蒸气膜阶段向沸腾期的转变温度过高时,大的冷速而产生大的热应力使低屈服点的奥氏体发生变形而导致零件的畸变。Lübben等人认为变形是单个零件或零件之间浸油不均匀造成,尤其是采用新油是更易出现这种情形。Tensi等人认为:在Ms点的冷却速度对变形起决定性作用,在Ms点及以下温度采用低的冷速可减少变形。Volkmuth等人系统研究了淬火介质(包括油及盐浴)对圆锥滚子轴承内外圈的淬火变形。结果表明:由于冷却方式不同,套圈的直径将有不同程度的“增大”,且随介质温度的提高,套圈大小端的直径增大程度趋于一致,即“喇叭”状变形减小,同时,套圈的椭圆变形(单一径向平面内的直径变动量Vdp、VDp)减小;内圈因刚度较大,其变形小于外圈。马氏体淬回火后零件的尺寸稳定性主要受三种不同转变的影响:碳从马氏体晶格中迁移形成ε-碳化物、残余奥氏体分解和形成Fe3C,三种转变相互叠加。50~120℃之间,由于ε-碳化物的沉淀析出,引起零件的体积缩小,一般零件在150℃回火后已完成这一转变,其对零件以后使用过程中的尺寸稳定性的影响可以忽略100~250℃之间,残余奥氏体分解,转变为马氏体或贝氏体,将伴随着体积涨大;200℃以上,ε-碳化物向渗碳体转化,导致体积缩小。研究也表明:残余奥氏体在外载作用下或较低的温度下(甚至在室温下)也可发生分解,导致零件尺寸变化。因此,在实际使用中,所有的轴承零件的回火温度应高于使用温度50℃,对尺寸稳定性要求较高的零件要尽量降低残余奥氏体的含量,并采用较高的回火温度。
...

详解:轴承的养护、清洗与检修

轴承的养护      滚动轴承是应是广泛的重要机械基础件,广泛用于国民经济和国防事业各个领域。使用滚动轴承的 机械及工作环境千差万别,所以要特别注意对轴承的养护,提高轴承的使用寿命。 轴承的安装   滚动的轴承是一种精密零件,具有较高的尺寸精密,如果安装不当,将会失去应有的精密和性能, 严重时还会造成轴承失效。因此安装轴承的场地和安装工具必须清洁,以防止各种颗粒物带入轴承内部 。安装和拆卸轴承时不应直接锤击,应施以均匀压力,轴与轴承配合过盈较大时,轴承应加热后立即安 装。 轴承成品的防锈     轴承是一种精密机械零件。从产品出厂到经过较长的流通环节。为了预防轴承在各种环境条件下运 输或仓储期间发生锈蚀,必须对其进行防锈处理。根据国家GB/TS597标准的规定。轴承的防锈期为半年 。一般轴承的防锈期为一年,有较高使用要求的轴衬防锈期为两年。由于各种原因造成轴承不能在防锈 期内使用的。在达到轴承防锈期时,应除去原有的防锈剂。 轴承的包装     由于轴承是精密零件,加上流通环节较多,产品在这些流通过程中容易受到环境条件如雪、尘埃、 温度、腐蚀性物质等的影响而受到损伤。因此,要求轴承的包装需具备多钟性能,如防震、防潮、防瞌 碰、防腐蚀、耐压等。 轴承的保管     库房内不得漏雨,轴承存放位置避免阳光直射,室内空气应流通,但不能有灰尘侵袭。库房内应设 置通风设备和温度调节设备。库房内应保持干燥,相对温度控制在80%以下,室内温度控制在25度左右 ,且昼夜不应有大得温度变化。温度过低,放锈剂容易结晶、开裂,导致部分金属裸露产生锈蚀,温度 过高,放锈剂容易流失(蒸发)或变质,昼夜温差大容易引起水分凝结在轴承表面引起锈蚀。冬节,轴 承存放位置不宜靠近暖气周围。库房内得地面应为硬质不容易起灰尘得地面。轴承不得与酸、碱、盐等 腐蚀性物资、化工原料、水分大的物资同处于一个库房内存放。存放轴承的库房周围不容易有害气体的 侵扰。 轴衬的运输      运输不当蚀最容易给轴承造成损失的环节,如微动磨损、锈蚀、磕碰伤、压痕等,最蛮装卸甚至还 可以导致轴承产生裂纹而直接失效。因此应特别注意运输环节的运输质量,避免轴衬遭受不必要的损伤 。轴承运输工具上摆放时应水平放置,不得将压力施加在轴承的外径方向上,以防止轴衬变形。运输工 具上码放时箱之间的距离应尽可能的靠近,以减少运输途中晃动给轴承带来的冲击和振动。   轴承在使用过程中需要我们进行日常的养护和检修,今天我们就来一起看看这方面的相关信息。 一、轴承的清洗 轴承在清洗和检修时,要做的第一步工作是记录轴承的外观情况并确认润滑剂的残余量,对剩余润滑剂 取样以备检验用之后,我们就可以开始清洗轴承了。轴承的清洗剂主要是使用普通的汽油或煤油。 轴承的清洗可以分为粗清洗和细精洗,在粗清洗时轴承所使用的容器需垫放金属网,这样轴承清洗后不 会再次接触到容器内的污物。粗清洗时可以使用刷子清除轴承上的润滑脂、粘着物,过程中应避免轴承 携带污物旋转,否则容易损伤轴承的滚动面。 轴承经过粗洗大致干净后即可进入精洗过程,即将轴承放在精洗用的清洗油中旋转,并仔细清除其上剩 余的污物,在精洗的过程中要注意清洗油的清洁。 二、轴承的检修 轴承在清洗干净之后应当进行详细的检查,确定轴承的损伤程度、机械性能等使用状况及是否能够继续 使用。检查的内容主要包括滚到面、滚动面和配合面的状态,保持架的磨损情况、轴承的尺寸精度上的 损伤、轴承的游隙等。 轴承在出现一些特定缺陷后,即可判断不能继续使用,而必须更换新轴承。这些情况包括:轴承的内圈 、外圈上有明显的蠕变;轴承过热变色明显;轴承的内圈、外圈、滚动体及保持架上一旦有裂纹、缺口 和断裂;轴承的滚到面、挡边、滚动体上有卡伤、锈伤、压痕和打痕。
...

轴承零件经热处理后常见的质量缺陷

轴承零件经热处理后常见的质量缺陷有:淬火显微组织过热、欠热、淬火裂纹、硬度不够、热处理变形、表面脱碳、软点等。 1.过热 从轴承零件粗糙口上可观察到淬火后的显微组织过热,但要确切判断其过热的程度必须观察显微组织。若在gcr15钢的淬火组织中出现粗针状马氏体,则为淬火过热组织。形成原因可能是淬火加热温度过高或加热保温时间太长造成的全面过热;也可能是因原始组织带状碳化物严重,在两带之间的低碳区形成局部马氏体针状粗大,造成的局部过热。过热组织中残留奥氏体增多,尺寸稳定性下降。由于淬火组织过热,钢的晶体粗大,会导致零件的韧性下降,抗冲击性能降低,轴承的寿命也降低。过热严重甚至会造成淬火裂纹。 2.欠热 淬火温度偏低或冷却不良则会在显微组织中产生超过标准规定的托氏体组织,称为欠热组织,它使硬度下降,耐磨性急剧降低,影响轴承寿命。 3.淬火裂纹 轴承零件在淬火冷却过程中因内应力所形成的裂纹称淬火裂纹。造成这种裂纹的原因有:由于淬火加热温度过高或冷却太急,热应力和金属质量体积变化时的组织应力大于钢材的抗断裂强度;工作表面的原有缺陷(如表面微细裂纹或划痕)或是钢材内部缺陷(如夹渣、严重的非金属夹杂物、白点、缩孔残余等)在淬火时形成应力集中;严重的表面脱碳和碳化物偏析;零件淬火后回火不足或未及时回火;前面工序造成的冷冲应力过大、锻造折叠、深的车削刀痕、油沟尖锐棱角等。总之,造成淬火裂纹的原因可能是上述因素的一种或多种,内应力的存在是形成淬火裂纹的主要原因。淬火裂纹深而细长,断口平直,破断面无氧化色。它在轴承套圈上往往是纵向的平直裂纹或环形开裂;在轴承钢球上的形状有s形、t形或环型。淬火裂纹的组织特征是裂纹两侧无脱碳现象,明显区别与锻造裂纹和材料裂纹。 4.热处理变形 轴承零件在热处理时,存在有热应力和组织应力,这种内应力能相互叠加或部分抵消,是复杂多变的,因为它能随着加热温度、加热速度、冷却方式、冷却速度、零件形状和大小的变化而变化,所以热处理变形是难免的。认识和掌握它的变化规律可以使轴承零件的变形(如套圈的椭圆、尺寸涨大等)置于可控的范围,有利于生产的进行。当然在热处理过程中的机械碰撞也会使零件产生变形,但这种变形是可以用改进操作加以减少和避免的。 5.表面脱碳 轴承零件在热处理过程中,如果手岢汹氧化性介质中加热,表面会发生氧化作用使零件表面碳的质量分数减少,造成表面脱碳。表面脱碳层的深度超过最后加工的留量就会使零件报废。表面脱碳层深度的测定在金相检验中可用金相法和显微硬度法。以表面层显微硬度分布曲线测量法为准,可做仲裁判据。
...

滑动轴承损坏的6个特点

作为世界顶级轴承的进口轴承来说,比如SKF、NSK等轴承应用非常广泛。每一种行业,其损坏的特点也不同。今天我们就看看发动机滑动轴承的损坏特点。   (1)、机械损伤   滑动轴承机械损伤是指轴瓦的合金表面出现不同程度的沟痕,严重时在接触表面发生金属剥离以及出现大面积的杂乱划伤;一般情况下,接触面损伤与烧蚀现象同时存在。造成轴承机械损伤的主要原因是轴承表面难以形成油膜或油膜被严重破坏。   (2)、轴承穴蚀   滑动轴承在气缸压力冲击载荷)的反复作用下,表面层发生塑性变形和冷作硬化,局部丧失变形能力,逐步形成纹并不断扩展,然后随着磨屑的脱落,在受载表面层形成穴。一般轴瓦发生穴蚀时,是先出现凹坑,然后这种凹坑逐步扩大并引起合金层界面的开裂,裂纹沿着界面的平行方向扩展,直到剥落为止。滑动轴承穴蚀的主要原因是,由于油槽和油孔等结构要素的横断面突然改变引起油流强烈紊乱,在油流紊乱的真空区形成气泡,随后由于压力升高,气泡溃灭而产生穴蚀。穴蚀一般发生在轴承的高载区,如曲轴主轴承的下轴瓦上。   (3)、疲劳点蚀   轴承疲劳点蚀是指,由于发动机超负荷工作,使得轴承工作过热及轴承间隙过大,造成轴承中部疲劳损伤、疲劳点蚀或者疲劳脱落。这种损伤大多是因为超载、轴承间隙过大,或者润滑油不清洁、内中混有异物所致。因此,使用时应该注意避免轴承超载工作不要以过低或过高的转速运转;怠速时要将发动机调整到稳定状态;确保正常的轴承间隙,防止发动机转速过高或过低;检查、调整冷却系统的工作情况,确保发动机的工作温度适宜。   (4)、轴承合金腐蚀   轴承合金腐蚀一般是区为润滑油不纯,润滑油中所台的化学杂质(酸性氧化物等)使轴承合金氧化而生成酸性物质,引起轴承合金部分脱落,形成无规则的微小裂孔或小凹坑。轴承合金腐蚀的主要原因是润滑油选用不当、轴承材料耐腐蚀性差,或者发动机工作粗暴、温度过高等。   (5)、轴承烧熔   轴颈和轴承摩擦副之间有微小的凸起金属面直接接触,形成局部高温,在润滑不足、冷却不良的情况下,使轴承合金发黑或局部烧熔。此故障常为轴颈与轴承配合过紧所致;润滑油压力不足也容易使轴承烧毁。   (6)、轴承走外圆   轴承走外圆就是轴承在座孔内有相对转动。轴承走外圆后,不仅影响轴承的散热,容易使轴承内表面合金烧蚀,而且还会使轴承背面损伤,严重时烧毁轴承。其主要原因是,轴承过短、凸榫损伤、加工或者安装不符合规范等。

...

浅谈:影响轴承寿命的材料

为了使上述影响轴承寿命的材料因素处于最佳状态,首先需要控制淬火前钢的原始组织,可以采取的技术措施有:高温(1050℃)奥氏体化速冷至630℃等温正火获得伪共析细珠光体组织,或者冷至420℃等温处理,获得贝氏体组织。也可采用锻轧余热快速退火,获得细粒状珠光体组织,以保证钢中的碳化物细小和均匀分布。这种状态的原始组织在淬火加热奥氏体化时,除了溶入奥氏体中的碳化物外,未溶碳化物将聚集成细粒状。
  当钢中的原始组织一定时,淬火马氏体的含碳量(即淬火加热后的奥氏体含碳量)、残留奥氏体量和未溶碳化物量主要取决于淬火加热温度和保持时间,随着淬火加热温度增高(时间一定),钢中未溶碳化物数量减少(淬火马氏体含碳量增高)、残留奥氏体数量增多,硬度则先随着淬火温度的增高而增加,达到峰值后又随着温度的升高而降低。当淬火加热温度一定时,随着奥氏体化时间的延长,未溶碳化物的数量减少,残留奥氏体数量增多,硬度增高,时间较长时,这种趋势减缓。当原始组织中碳化物细小时,因碳化物易于溶入奥氏体,故使淬火后的硬度峰移向较低温度和出现在较短的奥氏体化时间。
  综上所述,GCrl5钢淬火后未溶碳化物在7%左右,残留奥氏体在9%左右(隐晶马氏体的平均含碳量在0.55%左右)为最佳组织组成。而且,当原始组织中碳化物细小,分布均匀时,在可靠地控制上述水平的显微组织组成时,有利于获得高的综合力学性能,从而具有高的使用寿命。应该指出,具有细小弥散分布碳化物的原始组织,淬火加热保温时,未溶的细小碳化物会聚集长大,使其粗化。因此,对于具有这种的原始组织轴承零件淬火加热时间不宜过长,采用快速加热奥氏体化淬火工艺,将可获得更高的综合力学性能。
  为了使轴承零件淬回火后表面残留较大的压应力,可在淬火加热时通入渗碳或渗氮的气氛,进行短时间的表面渗碳或渗氮。由于这种钢淬火加热时奥氏体实际含碳量不高,远低于相图上示出的平衡浓度,因此可以吸碳(或氮)。当奥氏体含有较高的碳或氮后,其Ms降低,淬火时表层较内层和心部后发生马氏体转变,产生了较大的残留压应力。GCrl5钢以渗碳气氛和非渗碳气氛加热淬火(均经低温回火)处理后,经接触疲劳试验可以看出,表面渗碳的寿命比未渗碳的提高了1.5倍。其原因就是渗碳的零件表面具有较大的残留压应力。  影响高碳铬钢滚动轴承零件使用寿命的主要材料因素及控制程度为:
  (1)钢在淬火前的原始组织中的碳化物要求细小、弥散。可采用高温奥氏体化630℃、或420℃高温,也可利用锻轧余热快速退火工艺来实现。
  (2)对于GCr15钢淬火后,要求获得平均含碳量为0.55%左右的隐晶马氏体、9%左右Ar和7%左右呈匀、圆状态的未溶碳化物的显微组织。可利用淬火加热温度和时间来控制得到这种显微组织。
  (3)零件淬火低温回火后要求表面残留有较大的压应力,这有助于疲劳抗力的提高。可采用在淬火加热时进行表面短时间渗碳或渗氮的处理工艺,使得表面残留有较大的压应力。
  (4)制造轴承零件用钢,要求具有较高的纯净度,主要是减少O2、N2、P、氧化物和磷化物的含量。可采用电渣重熔,真空冶炼等技术措施使材料含氧量≤15PPM为宜。
...
分页:[«]1[2][»]

Copyright 2000-2011 http://www.chazc.com/blog/. Some Rights Reserved.